

George Nikolakopoulos

Chair Professor Robotics and Artificial Intelligence

geonik@ltu.se

www.ltu.se/robotics and www.gnikolak.com

ROBOTICS TEAM

at Luleå University of Technology

Prof. George Nikolakopoulos Head of Robotics Team

Dr. Christoforos Kanellakis Assistant Professor

Dr. Avijit Banerjee Post-Doc

Dr. Georgios Georgoulas Visiting Researcher

Dr. Anton Koval Post-Doc

Dr. Rucha Sawlekar Post-Doc

+7 Post Docs

Akshit Saradagi, Post-Doc

Summeet Satpute Post-Doc

Björn Lindqvist PhD Student

Samuel Karlsson PhD Student

Andreas Papadimitriou PhD Student

Yifan Bai PhD Student

Achilleas Seisa, PhD Student

Vignesh Kottayam Viswanathan PhD Student

Moumita Banarjee PhD Student

Akash Patel PhD Student

+5 PhD Students

Ilias Tevetzidis Research Engineer

Jakub Haluska Research Engineer

Dariusz Kominiak Research Engineer

RAI World-Wide Collaborations

Robotics & AI Team, LTU - Applications

- Autonomous robots for inspection
 - Wind turbines & power lines
 - Airplanes
 - Hard to reach and dangerous missions (fires, avalanches, nuclear reactors)

- Sustainability and efficiency in mining operations
- Ensuring the safety and security of persons during dangerous operations
- Robots for support, medical assistance, and search-and-rescue

ROBOTICS TEAM at Luleå University of Technology

RAI AREAS OF PRIMARY FOCUS

- Aerial robotics
- Inspection robotics
- Space robotics
- Service robotics
- Autonomous cars
- Soft Robotics
- Industrial robotics
- Robotized farming
- Construction robotics
- Marine robotics
- Underwater robotics

The Nebula Autonomy

The DARPA SUB-T COMPETITION

ROBOTICS TEAM at Luleå University of Technology

WE HAVE WON THE 2nd STAGE OF DARPA SUB-T COMPETITION

Late Nights, Cool Hacks, and More Stories From the DARPA SubT Urban Circuit

Everything you didn't see on the live stream at the DARPA SubT Challenge

The Ne Bula Autonomy Solution

https://costar.jpl.nasa.gov/

ROBOTICS TEAM

at Luleå University of Technology NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge, Journal of Field Robotics, 2021

The NEBULA Autonomy Solution

Autonomous Exploration of Extreme Environemts

The SubT competition

Multi-Robotic Orchestration

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge, Journal of Field Robotics, 2021

Extreme Autonomy in Multi-Modal Robotic Platforms

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge, Journal of Field Robotics, 2021

Autonomy for SubT planetary bodies exploration

ESA call for concepts on Lava tubes exploration

Field Autonomy for UAVs - I

Full Exploration Mission on UAVs - III

COMPRA: A COMPact Reactive
Autonomy framework for subterranean
MAV based search-and-rescue
operations

Authors: Björn Lindiqvist", Christoforos Kanellakis", Sina Sharif Mansouri , Ali-akbar Agha-mohammadii and George Nikolakopoulosi

The durburn are with the Alexans and Arthris Stellagerya from Department of Computer Department and Source Suprembly Links products of Asymptotic Sources.

Field Autonomy for legged Robotics

Embodied Autonomy: the hidden hero!

Onboard Full Autonomy I

Onboard Full Autonomy II

Onboard Full Autonomy II

Reactive navigation with online obstacle perception Non-Linear MPC

Reactive Distributed Collision Avoidance mor Multi UAVs

A Scalable Distributed Collision Avoidance Scheme for Multi-agent UAV systems

Björn Lindqvist, Pantelis Sopasakis and George Nikolakopoulos

Corresponding Author: Björn Lindqvist bjolin@huse

On Unification Hyper-Modality Robotic platforms

Our new Team Member

Hyper Modality Robotics in Caving environments

Relative Pose Estimation

Frontier Based Collaborative Exploration of planetary SubT environments

Exploration of potential lava tubes on Mars

Lava tube like Gazebo environment for exploration beneath
Mars surface

- Unstructured walls
- Steep slopes
- Narrow and wide passages
- Multiple junctions

Full Scale Realistic Autonomy Scenarios Simulation

Mars Coaxial Quadrotor - Balloon Falling Tests

Energy preserving frontiers based exploration of lava tube using Mars coaxial quadrotor

Exploration Autonomy Framework

Collaborative Exploration Autonomy Framework

Multiple UAV collaborative exploration Demonstration

ROBOTICS TEAM at Luted University of Technology

The collaboration strategy is to split the agents apart when they share a certain common field of view.

Space Autonomy for Cooperative Satellite Inspection Missions

Autonomy for satellite navigation

MPSP for satellite navigation

SPACE ROS

- Feedback provided for Space ROS development
 - o Technology gaps in areas of interest (e.g. surface and in-space systems)
- Currently ROSified field hardened robotics software

System/Mission Attributes	Comments / Description
Robotic Cardinality	Multi robot system
Operational Environment	Man-made caves, mines. Can be deployed in more areas.
Degree and Mode of Perception	3D Lidar, Stereo Vision (RGB-D), Odometry (IMU, SLAM).
Degree and Mode of Locomotion/Mobility	Legged, aerial, 2D-satellite.
Degree and Mode of Manipulation	None
Degree and Mode of Human Interaction	Full autonomy (human supervision for safety and some mission definition before starting)
Unique constraints and considerations	Legged robot carries aerial robot, where the aerial robot is being deployed to areas where the legged robot cannot reach.

Vigorithms	GNC including motion planning (coverage planning, planar platform motion and docking), path planning (voxel map global planning), obstacle avoidance (artificial potential fields), exploration (frontiers, RRT based) and robot control (PID, model based); sensor fusion (ekf, posegraphs, relative pose); perception (3d mapping, open3D, object detection); multi-robot coordination (e.g auction based); robot behavior manager (behavior trees); Graphical User Interface for mission management and monitoring
------------	---

Cooperative Visual Coverage of Small Bodies/Asteroids

Visual coverage of multiple sites on the asteroid surface

- o Minimize the consumption of fuel
- Observe illuminated sites
- o Multiple cubesat scaled spacecraft

#Phase 1

Landmark sites information

Single target optimization problem

Generate elementary trajectories

#Phase 2

Multi-target multiple spacecraft optimal sequencing algorithm

Generate optimal sequencing

Cooperative Stereo-Visual Coverage of an Asteroid

Nonlinear Model Predictive Control based Cooperative Stereo-Visual Coverage of an Asteroid

Vignesh Kottayam Viswanathan, Sumeet Gajanan Satpute, Avijit Banerjee and George Nikolakopoulos

Cooperative stereo-visual coverage of Ryugu asteroid by implementing a *Leader-Follower* approach

Autonomous Navigation around Asteroid OHB

Demonstration of onboard perception based visual navigation around asteroid Ryugu

Autonomous Navigation around Asteroid

Gazebo assisted visual demonstration tool orchestrating multiple satellite motion with camera footprint

Localization around Asteroid (Ongoing work)

Realsense T265 air tank Docking Part on Slider Thruster Regulator Thruster Assembly

Concptual design

Electromagnetic actuator for stationary port

